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distribution of avalanche size in Abelian sandpiles
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We study the distribution function of avalanche size, P,(s), for a general Abelian sandpile as a
function of the number of particles z added each time. An exact piecewise linear relation between
various P, is derived provided that the particles are added to one and only one site each time. This
is then verified by numerical simulation. We find that P.(s) depends, but maybe not very strongly
in general, on z. Thus z can be regarded as a fine-tune parameter for the Abelian sandpiles.

PACS number(s): 05.40.+j, 05.45.+b, 05.70.Jk

The idea of self-organized criticality was introduced by
Bak, Tang, and Wiesenfeld, using sandpile as an exam-
ple, that some complex systems may organize according
to their own dynamics into states where there are no
characteristic length and time scales. Thus scaling be-
havior in some of their physical quantities is observed
{1]. There is a particular type of sandpile model, the
Abelian models, that are interesting because of the rich
mathematical structures found [2]. The general rule of
the game, for conventional Abelian sandpile models can
be summarized as follows [1-4]: a unit number of parti-
cles is added to a site according to a certain underlying
probability distribution, which is taken to be uniform by
most authors. Whenever the number of particles in a site
is greater than a certain triggering threshold, rearrange-
ment of particles called toppling will occur in the next
time step. which is given by [2]

7
whenever h;, the number of particles in site i, is greater
than the triggering threshold. Without lost of gener-
ality, we can simply rescale the triggering threshold at
cach site to zero. The total number of toppling occur-
ing when a particle is introduced into the system defines
the avalanche size. Upon repeated introduction of parti-
cles and their subsequent relaxation via toppling, a sta-
tionary state is reached and the distribution function of
avalanche size P(s) can at least be computed nureri-
cally. Whenever a local particle conservation law exists
in the process of toppling, that is when particles can only
be allowed to dissipate at the system boundary, scaling
behavior in P(s) is observed [1.5].

The number of particles x added to the pile all at each
instant of time is proportional to the rate of introduc-
tion of stress onto the system between two successive
avalanches. Similarly the size of the toppling matrix A
represents the rate of stress releasing for each single top-
pling: if A is multiplied by a constant A > 1. then in
general, it takes approximately 1/A times the original
number of topplings to bring the system back to stabil-
ity. Thus it is interesting to know how the relative size
between the number of particles added and the number
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of particles involved in toppling each time in each site af-
fects the distribution of avalanches P(s). Without loss of
generality, we shall keep the toppling matrix A fixed and
vary the number of particles added = only. In addition,
we shall allow the number of particles in each site h; to
be a real number, so that we can vary z continuously.
The result, however, is also valid even if h; can take on
only integral values. Discussion of similar continuous lo-
cal height models can be found elsewhere [6,7].

In this letter, we are going to prove a piecewise linear
relationship between various P,(s) provided that parti-
cles are introduced to one and only one site each time.
This relation is then verified by numerical simulation on
the two-dimensional Abelian sandpile with open bound-
ary conditions. The result suggests that = can alter the
avalanche distribution, although the distribution itself is
not in general very sensitive to . Still, x can be regarded
as a fine-tuning parameter of the systeni.

Various authors have shown that the recurrence phase-
space voluine for Abelian sandpiles equals det A [2,6 -8].
If we regard every system configuration as a point in R",
the recurrence phase space, E, is therefore a subset of
R where n is the total number of sites in the system. In
fact. we can partition R™ in the following way [7.8]:

R*= |

ik €

Thy ook [B] (2)

where T, ...k, (y) = y+ ZLI k;A; with A; being the ith
row vector of the toppling matrix and Z is the set of all
integers. Moreover, for any point y € Tk, ...k, [E] with
all k; > 0, it requires exactly Y ©_, k; times of toppling
to bring it back to stability [7]. Similar results for the
discrete-integral case can be found elsewhere [9]. The
introduction of particles into the system can be regarded
as a translation A, [E] = {a +y : y € E} where the
ith coordinate component of a is the number of particles
added to site ¢, and the probability that an avalanche of
size s results is given by

P(sla) = 3" w(AulBIN Thy 0 [B]) /u(B), (3)

Ski=s !
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where p denotes the usual n-dimensional Lebesgue mea-
sure and the sum is over all non-negative k; with
S°% . ki = s. Whenever there is a change in the stress in-
troduction rate as reflected by multiplying a by a positive
constant, P(s|a) changes because the “volumes” of A,[F)]
in different parts of the partition of R™ by Tk, ... &, [E]
change. Thus the avalanche distribution depends not
only on how the particles are added, but also on the
shape of the recurrence phase space E. In particular,
if the particle is added to a particular site only (say an
arbitrary but fixed site j), then a; = x is the only non-
vanishing component of a. And from now on, P(s|z,j) is
used to denote the distribution of avalanches with exactly
z particles being added to site j.

It is trivial that P(s|0,7) = 84,0 for all j, where é, is
the Kronecker delta. The situation is much more compli-
cated for P(sle, j) for some sufficiently small e > 0. We
may write Eq. (3) as

P(sle, j) = aP(s]0,5) + (1 — @) P(s), (4)

where @ = a(e) is the fractional “volume” of E with
A, ;|E] also in E, and P(s) denotes the contribution of
P(sle,j) from the rest of the elements in E. There are
those that have become unstable at least once upon the
addition of particle to site j. Now we are going to show
that P is independent of € provided that it is sufficiently
small.

A direct consequence of Theorem 2 in [7] tells us that
the boundary of F of any Abelian sandpile is a (finite)
union of (bounded) sections of hyperplanes with normals
parallel to the coordinate axes. In fact, E is made up of
a finite union of mutually disjoint n-dimensional rectan-
gular blocks, say,

FE = U (a,-l,bil] X e X (ain,bin]. (5)

i

Note that the action of A, ; on E simply translates the
rectangular blocks along the j axis for any z > 0. Then
for any 0 < € < min; (b;; — a;;) = M, the “volume” of
A ;[E]NTy,,... k. [E] for all k; € N but not all zero is pro-
portional to €. So let us write p (Ac ;[E] N Tk, ... k. [E]) =
Cky,- ko € for some constant (g, ...k, > 0. From Eq. (3),
we have

M (E) P(s|e,j) = (1 - KE)(;B,O + Z Ckl,---,k,.e‘ss,a’y
Zk,’:&'

(6)

where K = Zkl’m,kn Cky, - kn - Compared with Eq. (4),

it is clear that P(s) is independent of €. The above ar-
gument shows also that o depends linearly on e.

When € > M, the situation is completely different be-
cause part of the A, ;[E] may enter into a new rectangu-
lar block or leave an old one. This is precisely the time
when a large change in P(s) may begin and M can be
regarded as a critical value in this respect. If we arrange
the critical values of particles added onto site 7 in as-
cending order, say 0 = M; < My < --- < M < ---, then
using the same idea as above, it is not difficult to see that

for any Mj_; < z < My, we have

k
P(s|z,j) = Zaipi(s) (7)

1=0

for some a; > 0 with Ef:o a; = 1, and R(s) is inde-
pendent of = for each i. Here o; depends linearly on z.
By substituting * by Mj,..., My into Eq. (7), we can
rewrite it into a more useful form:

k
P(s|z,j) = ZﬁiP(ﬂMi,j) (8)

for some (3; > 0, which depends linearly on z, with
Ef:o B; = 1. By putting £ = Mj_; and £ = M}, onto
Eq. (8), we have the following important linear relation-
ship:

. 1
P(s|z,j) =

=—— [(My —z) P(s|Mg_1,7
My — My, [( k ﬂU) (s|Mk—1,7)

+ (z — My—1) P(s|Mg, j)], (9)

whenever Mj_1 < z < M. As j is arbitrary and the
number of sites, and hence the number of ways that par-
ticles are introduced into the system, is finite, the above
result holds also for any distribution of particle addition
method, uniform or not, as long as particles are added
to one and only one site each time. And Eq. (9) can be
formally generalized to

1

Po(s) =~
(s) M — My

[(Mk — ) Pp,_, (s)

+ (2 — My—1) Pr, (5)]5 (10)

whenever M;_, < z < Mj, where P, denotes the
avalanche size distribution when z particles are added
each time to one and only one site, following a prescribed
random particle addition method (uniformly over all the
sites or not). Thus we can construct P,(s) for any z > 0
by knowing the distributions of avalanche at all the crit-
ical points together with the values of the critical points,
as long as the particles are introduced into one and only
one site of the system each time. Let us consider the
one-dimensional asymmetric sandpile as an example: the
toppling matrix is given by

1, ifi=3j
Ai]’ = —1, if ¢ +1 :] (11)
0, otherwise.

Upon a uniform and random particle addition, direct
calculation shows that E = (—1,0]" and

L=fac@)] o hint(e), k=1,...,n

P.(s) = frac(z)

, fs=kl[int(z)+1], k=1,...,n
0, otherwise,

(12)
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where n is the number of sites of the system, and int(z)
and frac(x) denote the integral and fractional parts of
z, respectively. Equation (10) is therefore satisfied with
M; =i¢—1 for all ¢ > 0. So each time when z is just
slightly greater than an integral value, there is a sudden
change in the distribution of avalanche sizes (although
the recurrence phase space F remains unchanged).

This is also true for other less trivial Abelian sand-
piles. We illustrate it by the avalanche size distribution
of a two-dimensional symmetric pile with open boundary
condition; the toppling matrix is given by [2]

4, ifi=k,j=1
) -1, ifi=k,|j-1=1
Bagikd =N _1,  ifj=1li—k =1 (13)
0, otherwise
for ¢,j,k,l =1,...,n. Under a uniform and random par-

ticle addition scheme in a 50 x 50 grid, the avalanche size
distributions P,(s) for various values of x are shown in
Fig. 1, which are obtained by numerical simulation be-

P(s)

00 101 102 103 104

S

FIG. 1. Log-log plot of s against P.(s) for various z in a
50 x 50 grid. Note that values of P.(0) are not shown due
to the singularity of the log of zero. In (a), curves with z
= 1, 0.1, and 0.001 are shown in solid, dotted, and dashed
lines, respectively. In (b), curves with z = 1, 2, 3, and 4
are shown in solid, dotted, dashed, and dash-dotted lines,
respectively. The distribution is obtained by applying the
particle addition operations ranging from 2 x 10° times for
x = 0.001 to 4 x 10° times for £ = 4. The fluctuations in
large s are due to insufficient data.

TABLE I. Scaling exponents as a function of z.

o z | g
1.0 1.01+0.01
2.0 0.994+0.01
3.0 0.9640.01
4.0 0.934+0.02

cause no analytic form is known to date. The graphs
shows that P, certainly depends on z although not in a
very sensitive way as compared to the one-dimensional
model above. Nevertheless it is clear that we can change
the distribution by altering the value of . In this re-
spect,  can be regarded as a fine-tune parameter of the
system similar to the role of the underlying distribution
of the particle addition function as discussed elsewhere
[10]. The graphs shows that the range of s for which
the scaling relationship P,(s) =~ s~ holds drops from
about three decades for z = 1 to about two decades for
x = 4. Values of v for a number of different x, which are
obtained by measuring the slopes of the regions of the
curves where the scaling relationship holds, are listed in
Table I showing its weak dependence on z. Unlike P,
Eq. (10) tells us that «(s) changes smoothly as s varies
across the thresholds M.

Because the recurrence phase space F, in this case, is
made up of a finite union of hypercubes of unit length on
each side, the critical values M; = i — 1 for all i. Table II
shows the error between the actual numerically simulated
P, and the interpolated one, thus verifying the validity
of Eq. (10).

In conclusion, we have derived a piecewise linear re-
lationship between various avalanche size distributions
provided that particles are introduced to the system at
one and only one site each time, which is verified by nu-
merical simulation. Such a linear relationship is remark-
able and is not expected at the first sight in this kind
of complicated system. Besides, we show that z (and
hence a distribution of various allowed values of z) can
act as a fine tuning parameter for the Abelian sandpiles,
which indicates the importance of the relative scales be-
tween stress introduction rate and the local stress releas-
ing rate on P(s). It is interesting to extend our work to
both the non-Abelian sandpiles and the case where parti-

TABLE II. Errors between the simulated and the exact
results of P,(s) for various z.

T | Error® | Iterations®
0.1] 0.07+0.09 6 % 107
1.5| 0.17+0.20 5 x 10°
2.5] 0.19+0.20 4 x 10°
3.9] 0.30£0.40 1x10°

?The mean square error between the simulated and the exact
result in log-log domain.

PNumber of times where particles are introduced into the sys-
tem during the simulation in order to obtain P,, and hence
Y.
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cles are introduced into more than one site each time. In
fact, the “local limited model” introduced by Kadanoff
et al. and intensively studied by Chhabra et al. recently
[4] suggests that the relative scale of the toppling matrix
(and hence the number of particles added to the pile each
time) is also important for noncommutative models, at

least the one-dimensional ones. Work along these two
lines is in progress.
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